
1© 2019 Cengage. My not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.

IT5507 Fundamentals 
of 

Data Science

Chapter 3
The Relational Database Model



2

Learning Objectives

• After completing this chapter, you will be able to:
• Describe the relational database model’s logical structure
• Identify the relational model’s basic components and explain the structure, contents, 

and characteristics of a relational table
• Use relational database operators to manipulate relational table contents
• Explain the purpose and components of the data dictionary and system catalog
• Identify appropriate entities and then the relationships among the entities in the 

relational database model
• Describe how data redundancy is handled in the relational database model
• Explain the purpose of indexing in a relational database

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



3

A Logical View of Data

• Logical Data Representation: Relational Database Model enables a logical 
portrayal of data and its relationships.

• Design Simplicity: Logical simplicity leads to straightforward and effective 
methodologies for designing databases.

• Data Relationships: The creation of relationships, based on a logical construct 
known as a relation, facilitates a cohesive logical view of the data.

• Strategic Insights: A logical view of data is pivotal for gaining strategic insights, 
ensuring efficient decision-making and enhancing the overall understanding of 
complex information structures.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



4

Tables and Their Characteristics

Table 3.1 Characteristics of a Relational Table

1 A table is perceived as a two-dimensional structure composed of rows and 
columns.

2 Each table row (tuple) represents a single entity occurrence within the entity 
set.

3 Each table column represents an attribute, and each column has a distinct 
name.

4 Each intersection of a row and column represents a single data value.

5 All values in a column must conform to the same data format.

6 Each column has a specific range of values known as the attribute domain.

7 The order of the rows and columns is immaterial to the DBMS.

8 Each table must have an attribute or combination of attributes that uniquely 
identifies each row.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



5

Keys

• Key Principles: Keys, like a social security number in a citizens' database, consist 
of one or more attributes, dictating and uniquely identifying rows, fostering 
relationships among tables and upholding data integrity.

• Primary Key Significance: In a student information database, the combination 
of Student ID and Course ID serves as the primary key, uniquely identifying each 
enrollment record and ensuring data integrity within the relational structure.

• Key Principles: In a library database, a book's ISBN (International Standard Book 
Number) can serve as a key, ensuring each book is uniquely identifiable and 
facilitating relationships with information about borrowers or authors.

• Primary Key Significance: The ISBN, in this case, acts as the primary key, 
uniquely identifying each book entry and maintaining the integrity of the library 
database.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



6

Dependencies

• Determination in Action: In an employee database, the Social Security Number 
(SSN) can be a determinant, where knowing it allows determination of the 
employee's full name, establishing a functional dependence crucial for 
relational integrity.

• Example of Functional Dependence: If the SSN is the determinant, the 
employee's full name becomes the dependent, showcasing a functional 
dependence where one attribute's value determines another’s.

• Full Functional Dependence Illustration: In this scenario, the entire collection 
of attributes in the determinant (SSN) is necessary for establishing the 
relationship and determining the dependent attribute (full name).

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



7

Types of Keys (1 of 3) 

• Composite Key Example: In a university database, a composite key could be formed by combining 
the Student ID and Course Code, ensuring each enrollment record is uniquely identified.

• Superkey Illustration: A superkey might include the combination of Student ID, Course Code, and 
Semester, uniquely identifying any enrollment record in the table.

• Candidate Key in Action: Among superkeys, a candidate key would be a minimal combination like 
Student ID and Course Code, providing unique identification without unnecessary attributes.

• Entity Integrity Exemplified: In a student table, entity integrity ensures each student has a unique 
Student ID, and all values in the primary key (Student ID) are distinct.

• Referential Integrity Scenario: In a department table, referential integrity ensures that every 
reference to a Department ID in a course table is valid, creating a relationship between entities.

• Foreign Key Usage: If the Department ID from the department table is placed into the course table, 
it becomes a foreign key establishing a connection between the two tables.

• Secondary Key Purpose: A secondary key, like indexing courses based on their names, is used 
strictly for data retrieval without the uniqueness constraints of a primary key. 

Think of a library catalog where books are indexed by genre (e.g., "Mystery" or "Science Fiction"). This genre index serves as a 
secondary key, allowing readers to retrieve books based on categories without requiring each genre to be unique like a primary key.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



8

Types of Keys (2 of 3)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



9

Types of Keys (3 of 3)

Table 3.3 Relational Database Keys

Key Type Definition

Superkey An attribute or combination of attributes that uniquely identifies 
each row in a table.

Candidate 
key

A minimal (irreducible) superkey; a superkey that does not contain a 
subset of attributes that is itself a superkey.

Primary key A candidate key selected to uniquely identify all other attribute 
values in any given row; cannot contain null entries.

Foreign key An attribute or combination of attributes in one table whose values 
must either match the primary key in another table or be null.

Secondary 
key

An attribute or combination of attributes used strictly for data 
retrieval purposes.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



10

Integrity Rules (1 of 4)

• Relational database integrity rules are very important to good database design
• Relational database management systems (RDBMSs) enforce integrity rules 

automatically
- Much safer to make sure the application design conforms to entity and referential integrity 

rules
- Importance of Integrity Rules: Ensuring the reliability of a relational database, integrity rules 

play a vital role in maintaining data accuracy. While RDBMSs automatically enforce these rules, 
it's crucial for application design to align with entity and referential integrity for a safer and 
more dependable database.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.

Ensuring Accuracy with Integrity Rules: Consider a university database where the 
student table has a primary key for student IDs. Enforcing entity integrity ensures 
that each student is uniquely identified. Now, if another table references student IDs, 
referential integrity ensures that any reference corresponds to a valid student ID in 
the student table, preventing data inconsistencies. These rules, when followed, 
contribute to a reliable and accurate database.



11

Integrity Rules (2 of 4)

Table 3.4 Integrity Rules

Entity Integrity Description

Requirement All primary key entries are unique, and no part of a primary key may be null.

Purpose Each row will have a unique identity, and foreign key values can properly reference 
primary key values.

Example No invoice can have a duplicate number, nor can it be null; in short, all invoices are 
uniquely identified by their invoice number.

Referential Integrity Description

Requirement A foreign key may have either a null entry, as long as it is not a part of its table’s primary 
key, or an entry that matches the primary key value in a table to which it is related (every 
non-null foreign key value must reference an existing primary key value).

Purpose It is possible for an attribute not to have a corresponding value, but it will be impossible to 
have an invalid entry; the enforcement of the referential integrity rule makes it impossible 
to delete a row in one table whose primary key has mandatory matching foreign key 
values in another table.

Example A customer might not yet have an assigned sales representative (number), but it will be 
impossible to have an invalid sales representative (number).

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



12

Integrity Rules (3 of 4)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



13

Integrity Rules (4 of 4)

• Ways to handle nulls
• Flags

- Special codes used to indicate the absence of some value 

• Constraints 
- NOT NULL constraint: placed on a column to ensure that every row in the table has a value for 

that column
- UNIQUE constraint: restriction placed on a column to ensure that no duplicate values exist for 

that column

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.

Example of Using Flags: In a database tracking employee attendance, a special 
code like "-1" could be assigned to signify that an employee did not clock in on a 
particular day.
Example of Using Constraints: Applying a NOT NULL constraint to the "Email" 
column in a user database ensures that each user record must have a valid email 
address, preventing the absence of this crucial information. Similarly, a UNIQUE 
constraint on the "Username" column guarantees that no two users share the 
same username, maintaining data consistency.



14

Relational Algebra

• Theoretical way of manipulating table contents using relational operators
• Relvar: variable that holds a relation

- Heading contains the names of the attributes 
- Body contains the relation

• Relational operators have the property of closure
- Closure: use of relational algebra operators on existing relations produces new relations

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.

In the world of databases:
•Relvar is like a storage box that holds information (a table).
•Heading is the list of attributes (column names) in the box.
•Body is the actual data stored in the box.
Now, think of relational algebra as a set of actions you can perform on these boxes:
•Operators are the actions you take, like selecting specific attributes or combining two boxes.
•Closure means that when you perform these actions, you get a new box with its own heading and 
body.
So, it's like playing with boxes of information – you can choose what to look at, combine them, and 
create new boxes based on these operations.



15

Relational Set Operators (1 of 11)

• Select (restrict): Think of it as putting a filter to get only specific rows from a 
table. For example, you can select all customers who are from New York.

• Project: This is like trimming down your table to just the columns you're 
interested in. For instance, if you have a table with customer information but 
only want to see their names and emails, you'd project those two columns.

• Union: Imagine stacking two tables on top of each other, but making sure you 
don't have any duplicate rows. So if you have one table with customer names 
and another with employee names, the union would combine them into a 
single table with all unique names.

• Intersect: This operation gives you only the rows that are common between 
two tables. For example, if you have a table of products that are both in stock 
and on sale, and another table of products that are on sale, intersecting them 
would give you only the products that are both in stock and on sale.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



16

Relational Set Operators (2 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



17

Relational Set Operators (3 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



18

Relational Set Operators (4 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



19

Relational Set Operators (5 of 11)

• Difference (Except): This operation gives you the rows that exist in one table 
but not in another. For example, if you have a table of all products and another 
table of products that are out of stock, the difference would give you only the 
products that are still in stock.

• Product/ Cartesian Product (Cross Join): This operation combines every row 
from one table with every row from another table, resulting in a new table. For 
instance, if you have a table of colors and a table of sizes, the Cartesian product 
would create a table with all possible color and size combinations.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



20

Relational Set Operators (6 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



21

Relational Set Operators (7 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



22

Relational Set Operators (8 of 11)

Joins are operations in relational databases that intelligently combine information from two or more 
tables. Different types of joins include:

1.Natural Join: Links tables by selecting only the rows with common values in their common attribute.

2.Equijoin: Links tables based on an equality condition that compares specified columns of each table.

3.Theta Join: Links tables using an inequality comparison operator.

4.Inner Join: Only returns matched records from the tables that are being joined.

5.Outer Join: Retains matched pairs and leaves unmatched values in the other table as null.
1. Left Outer Join: Yields all rows in the first table, including those without a matching value in the second 

table.
2. Right Outer Join: Yields all rows in the second table, including those without matching values in the first 

table.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



23

Relational Set Operators (9 of 11)

• Divide
• Uses one double-column table as the dividend and one single-column table as the 

divisor
• Output is a single column that contains all values from the second column of the 

dividend that are associated with every row in the divisor
• This operation is a bit more complex. It is used to find records in one table for which 

there are matching records in another table for every record in the first table. An 
example could be finding customers who have purchased all available products.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



24

Relational Set Operators (10 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



25

Relational Set Operators (11 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



26

Data Dictionary and the System Catalog 

• Data dictionary
• Description of all tables in the database created by the user and designer 

• System catalog
• System data dictionary that describes all objects within the database 

• Homonyms and synonyms must be avoided to lessen confusion
- Homonym: same name is used to label different attributes 
- Synonym: different names are used to describe the same attribute 

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.

A data dictionary is a comprehensive description of all tables in a database, providing details created by 
both the user and designer. The system catalog, part of the data dictionary, encompasses information 
about all objects within the database. To prevent confusion, it is crucial to avoid homonyms (same name 
for different attributes) and synonyms (different names for the same attribute). This meticulous 
documentation ensures clarity and consistency in database management.



27

Relationships within the Relational Database (1 of 4)

• One-to-Many (1:M):

Definition: A norm for relational databases where one entity is associated with many instances of another entity.

Example: A university database where one department has many professors.

• One-to-One (1:1):

Definition: Each entity can be related to only one other entity, and vice versa.

Example: A database for employee records where each employee has only one office.

• Many-to-Many (M:N):

Definition: Implemented by creating a new entity in 1:M relationships with the original entities.

Example: A database for courses and students where one student can enroll in multiple courses, and a course can 
have multiple students. A composite entity (bridge table) might include the primary keys of both the "Student" and 
"Course" tables.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



28

Relationships within the Relational Database (2 of 4) 

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



29

Relationships within the Relational Database (3 of 4) 

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



30

Relationships within the Relational Database (4 of 4)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



31

Data Redundancy Revisited (1 of 2)

• Control of Data Redundancies in Relational Databases:

• Foreign Keys Example: Consider two tables, 'Customers' and 'Orders.' The 'CustomerID' in the 'Orders' table serves as a foreign key 
linked to the 'CustomerID' in the 'Customers' table. This prevents duplicating customer information in each order.

• Common Attributes Example: If 'ProductID' is a common attribute between 'Products' and 'Sales,' linking these tables through this 
attribute helps control data redundancies, ensuring consistency in product-related information.

• Exceptions to Controlling Data Redundancy:

• Information Purposes Example: In a reporting database, redundant information might be stored to facilitate quicker data retrieval 
and reporting, emphasizing performance over normalization.

• Historical Accuracy Example: In a historical database, redundant data might be stored to preserve the state of information at 
different points in time, ensuring accurate historical reporting.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



32

Data Redundancy Revisited (2 of 2)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



33

Indexes

• Database Indexing:

• Index Key: A database index provides an orderly arrangement to logically access rows in a table. The 
index key is the reference point that leads to the data location identified by the key.

• Unique Index Example: In a 'Students' table, the 'StudentID' can serve as a unique index key. Each 
student ID uniquely identifies a student, and the index ensures efficient retrieval of student data 
based on this key.

• Efficient Retrieval: Indexing ensures efficient retrieval of data by providing an orderly arrangement, 
reducing the need for full table scans.

• Faster Queries: By creating an index on frequently queried columns, database searches and 
operations become faster.

• Enhanced Performance: Indexing enhances database performance, particularly in large datasets, by 
optimizing data access pathways.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



34

Codd’s Relational Database Rules (1 of 2)

Table 
13.8

Dr. Codd’s 12 Relational Database 
Rules

Rule Rule Name Description 

1 Information All information in a relational database must be logically represented as 
column values in rows within tables.

2 Guaranteed access Every value in a table is guaranteed to be accessible through a combination 
of table name, primary key value, and column name.

3 Systematic treatment of nulls Nulls must be represented and treated in a systematic way, independent of 
data type.

4 Dynamic online catalog based
on the relational model

The metadata must be stored and managed as ordinary data—that is, in 
tables within the database; such data must be available to authorized users 
using the standard database relational language.

5 Comprehensive data
sublanguage

The relational database may support many languages; however, it must
support one well-defined, declarative language as well as data definition,
view definition, data manipulation (interactive and by program), integrity
constraints, authorization, and transaction management (begin, commit,
and rollback).

6 View updating Any view that is theoretically updatable must be updatable through the
system.

7 High-level insert, update, and delete The database must support set-level inserts, updates, and deletes.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.

Codd's rules, fundamental to relational databases, emphasize criteria such as information rule, guaranteed access, systematic treatment 
of null values, comprehensive data sublanguage, and integrity constraints, ensuring a standardized and reliable approach to database 
management.



35

Codd’s Relational Database Rules (2 of 2)

Table 
13.8

Dr. Codd’s 12 Relational Database 
Rules

Rule Rule Name Description 

8 Physical data independence Application programs and ad hoc facilities are logically unaffected when 
physical access methods or storage structures are changed.

9 Logical data independence Application programs and ad hoc facilities are logically unaffected when 
changes are made to the table structures that preserve the original table 
values (changing order of columns or inserting columns).

10 Integrity independence All relational integrity constraints must be definable in the relational 
language and stored in the system catalog, not at the application level.

11 Distribution independence The end users and application programs are unaware of and unaffected by 
the data location (distributed vs. local databases).

12 Nonsubversion If the system supports low-level access to the data, users must not be 
allowed to bypass the integrity rules of the database.

13 Rule zero All preceding rules are based on the notion that to be considered relational, 
a database must use its relational facilities exclusively for management.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.



36

Summary 

• Tables are the basic building blocks of a relational database
• Keys are central to the use of relational tables

- Each table row must have a primary key

• Although tables are independent, they can be linked by common attributes

• The relational model supports several relational algebra functions
• A relational database performs much of the data manipulation work behind the 

scenes
• Once you know the basics of relational databases, you can concentrate on design

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website 
for classroom use.


	Slide Number 1
	Learning Objectives
	A Logical View of Data
	Tables and Their Characteristics
	Keys
	Dependencies
	Types of Keys (1 of 3) 
	Types of Keys (2 of 3)
	Types of Keys (3 of 3)
	Integrity Rules (1 of 4)
	Integrity Rules (2 of 4)
	Integrity Rules (3 of 4)
	Integrity Rules (4 of 4)
	Relational Algebra
	Relational Set Operators (1 of 11)
	Relational Set Operators (2 of 11)
	Relational Set Operators (3 of 11)
	Relational Set Operators (4 of 11)
	Relational Set Operators (5 of 11)
	Relational Set Operators (6 of 11)
	Relational Set Operators (7 of 11)
	Relational Set Operators (8 of 11)
	Relational Set Operators (9 of 11)
	Relational Set Operators (10 of 11)
	Relational Set Operators (11 of 11)
	Data Dictionary and the System Catalog 
	Relationships within the Relational Database (1 of 4)
	Relationships within the Relational Database (2 of 4) 
	�Relationships within the Relational Database (3 of 4) �
	�Relationships within the Relational Database (4 of 4)�
	Data Redundancy Revisited (1 of 2)
	Data Redundancy Revisited (2 of 2)
	Indexes
	Codd’s Relational Database Rules (1 of 2)
	Codd’s Relational Database Rules (2 of 2)
	Summary 

