
1© 2019 Cengage. My not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

IT5507 Fundamentals 
of 

Data Science

Chapter 4
Entity Relationship (ER) Modelling



2

Learning Objectives

• After completing this chapter, you will be able to:
• Identify the main characteristics of entity relationship components
• Describe how relationships between entities are defined, refined, and 

incorporated into the database design process
• See how ERD components affect database design and implementation
• Understand that real-world database design often requires the reconciliation of 

conflicting goals

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



3

The Entity Relationship Model (ERM)

• Forms the basis of an entity relationship diagram (ERD) 
• Conceptual database as viewed by end user, ERD serves as a visual representation of a 

conceptual database, highlighting its core components:

• Database’s main components
• Entities: Entities represent real-world objects or concepts within the database. For example, in a 

university database, "Student" and "Course" could be entities.

• Attributes: Attributes describe the properties or characteristics of entities. For instance, in the 
"Student" entity, attributes could include "StudentID," "Name," and "Major."

• Relationships: Relationships illustrate how entities are connected or related to each other. In the 
university database, a relationship could exist between "Student" and "Course," indicating that a 
student enrolls in courses.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



4

Entities

• Entity: An object of interest to the end user, representing a group of similar items or concepts 
within the database. For example, in a library database, "Book" could be an entity.

• Entity Set: Refers to the collection of all instances of a particular entity within the database. For 
instance, the entity set "Book" encompasses all books in the library database.

• Entity Relationship Model (ERM): A graphical representation that illustrates how entities are 
related to each other within a database system. It corresponds to a table in the relational 
environment.

• Entity Instance (or Entity Occurrence): A specific occurrence of an entity, representing a single row 
in a database table. In a library database, each individual book record would be an entity instance.

• Entity Representation: In various diagramming notations like Chen, Crow’s Foot, and UML, entities 
are typically represented by rectangles containing the entity's name, usually written in all capital 
letters.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



5

Attributes (1 of 7)

• Characteristics of Entities:

• Required Attribute: Attributes that must have a value and cannot be left empty. For example, in a "Customer" entity, "CustomerID" 
might be a required attribute.

• Optional Attribute: Attributes that do not require a value and can be left empty. An example could be the "Middle Name" attribute in 
a "Person" entity.

• Domain: The set of possible values for a given attribute. For instance, the domain of the "Gender" attribute could be {Male, Female, 
Other}.

• Identifier: One or more attributes that uniquely identify each entity instance. For example, in an "Employee" entity, the 
"EmployeeID" might serve as the identifier.

• Composite Identifier: A primary key composed of more than one attribute. For instance, in a "Sales" entity, the composite identifier 
might consist of both "OrderID" and "ProductID".

• Composite Attribute: An attribute that can be subdivided to yield additional attributes. An example could be the "Address" attribute, 
which may comprise "Street", "City", "State", and "Zip Code".

• Simple Attribute: An attribute that cannot be subdivided further. For instance, "Age" could be considered a simple attribute.

• Single-valued Attribute: An attribute that has only a single value. For example, "Date of Birth" in a "Person" entity.

• Multivalued Attributes: Attributes that can have multiple values. For instance, a "Skills" attribute in an "Employee" entity could 
include multiple skills such as "Programming", "Management", etc.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



6

Attributes (2 of 7)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



7

Attributes (3 of 7)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



8

Attributes (4 of 7)

• Requirements of multivalued attributes
• Create Several New Attributes: One approach to handling multivalued attributes is to create 

several new attributes, one for each component of the original multivalued attribute. For 
example, if the original multivalued attribute is "Skills", you might create separate attributes such 
as "Programming Skill", "Management Skill", etc.

• Develop a New Entity: Another approach is to develop a new entity composed of the original 
multivalued attribute’s components. Using the same example of "Skills", you could create a new 
entity called "EmployeeSkills" with attributes like "EmployeeID" and "Skill".

• Derived Attribute: A derived attribute is an attribute whose value is calculated from other 
attributes. These attributes are derived using an algorithm or formula based on other attribute 
values. For instance, if you have attributes for "Height" and "Weight", you could derive a "Body 
Mass Index (BMI)" attribute using a formula.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



9

Attributes (5 of 7)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

Splitting the multivalued attribute into new attributes involves creating separate 
attributes for each component of the original multivalued attribute. For example, if the 
original multivalued attribute is "Skills", it can be split into individual attributes such as 
"Programming Skill", "Management Skill", "Communication Skill", and so on. Each of 
these new attributes represents a specific aspect of the original multivalued attribute, 
allowing for more granular data representation and easier querying and analysis.



10

Attributes (6 of 7)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

A derived attribute is an attribute whose value is calculated or derived from other attributes within the 
database. It does not store data directly but rather computes its value based on predefined rules or 
algorithms applied to other attributes. For example, in a database tracking employee information, a 
derived attribute could be "Age", which is calculated based on the employee's date of birth and the 
current date. This ensures that the age is always up-to-date and consistent without needing to be 
stored separately in the database.



11

Attributes (7 of 7)

Table 4.2 Advantages and 
Disadvantages of Storing 
Derived Attributes
Derived Attribute: Stored Derived Attribute: Not 

Stored 
Advantage Saves CPU processing cycles

Saves data access time
Data value is readily available
Can be used to keep track of 
historical data

Saves storage space
Computation always yields 
current value

Disadvantage Requires constant maintenance 
to ensure derived value is 
current, especially if any values 
used in the calculation change

Uses CPU processing cycles
Increases data access time
Adds coding complexity to 
queries

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



12

Relationships, Connectivity, and Cardinality 

• Association between entities that always operate in both directions
• Participants: entities that participate in a relationship

• Connectivity: describes the relationship classification
• Include 1:1, 1:M, and M:N

• Cardinality: expresses the minimum and maximum number of entity 
occurrences associated with one occurrence of related entity
• In the ERD, cardinality is indicated by placing the appropriate numbers beside 

the entities, using the format (x, y)

An association between entities in an ERD is bidirectional, involving 
participants and expressing connectivity and cardinality. For example, in a 
relationship between "Student" and "Course," the cardinality might be 
(1, M), indicating each student (1) can enroll in multiple courses (M).

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



13

Existence Dependence

• Existence dependence
• Entity exists in the database only when it is associated with another related 

entity occurrence

• Existence independence
• Entity exists apart from all of its related entities
• Referred to as a strong entity or regular entity

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

Existence dependence occurs when an entity exists only when associated with 
another related entity occurrence. For example, in a university database, a course 
offering entity exists only when associated with a course entity. Existence 
independence, on the other hand, means an entity exists independently, such as a 
student entity in the university database.



14

Relationship Strength

• Weak (non-identifying) relationship
• Primary key of the related entity does not contain a primary key component of 

the parent entity

• Strong (identifying) relationships
• Primary key of the related entity contains a primary key component of the 

parent entity

A weak (non-identifying) relationship occurs when the primary key of the related 
entity does not include any primary key component of the parent entity. For 
example, consider a relationship between a department and a course offering in 
a university database. The department's primary key does not become part of 
the course offering's primary key. Conversely, in strong (identifying) relationships, 
the primary key of the related entity includes a primary key component of the 
parent entity.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



15

Weak Entities (1 of 3)

• Conditions of a weak entity 
• Existence-dependent 
• Has a primary key that is partially or totally derived from parent entity in the 

relationship

• Database designer determines whether an entity is weak 
• Based on business rules

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

A weak entity is existence-dependent, meaning it relies on its relationship with 
another entity for its existence. Its primary key is partially or entirely derived from 
the parent entity. For instance, consider an "Order" entity in a database system. It 
might be weak because its primary key, such as "OrderID," is generated by 
combining the customer's ID and the date of the order, both of which come from 
the "Customer" entity.



16

Weak Entities (2 of 3)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

A weak entity is an entity in a database that does not have a primary key attribute on its own and is dependent 
on another entity, known as the "owning" or "parent" entity. A weak entity typically relies on the existence of a 
related entity for identification.



17

Weak Entities (3 of 3) 

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



18

Relationship Participation (1 of 3)

• Optional participation in a relationship means that one entity occurrence 
does not necessarily require a corresponding entity occurrence in that 
relationship. For example, in a library database, a "Book" entity can be 
associated with a "Publisher" entity through an optional participation 
relationship, as not all books may have a known publisher.

• Mandatory participation, on the other hand, means that one entity 
occurrence must have a corresponding entity occurrence in the 
relationship. For instance, in a university database, the relationship 
between a "Student" entity and an "Advisor" entity might involve 
mandatory participation, as each student must be assigned an advisor.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



19

Relationship Participation (2 of 3)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



20

Relationship Participation (3 of 3)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



21

Relationship Degree (1 of 2)

• Relationship degree indicates the number of entities or participants associated with a relationship

• Unary Relationship: An association maintained within a single entity.
Example: In a "Manager" entity, where each manager reports to another manager within the same entity.

• Binary Relationship: Association between two entities.
Example: "Employee" and "Department" entities, where each employee belongs to one department, and each department 
employs multiple employees.

• Ternary Relationship: Association involving three entities.
Example: In a "Project" management system, where "Employee," "Task," and "Project" entities are associated, indicating 
which employees are assigned to which tasks within specific projects.

• Recursive Relationship: A relationship existing within a single entity type.
Example: In an "Employee" entity, where each employee has a "Supervisor" attribute referring to another employee in the 
same entity, representing a hierarchical structure.

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



22

Relationship Degree (2 of 2)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

In ER modeling:

- Conceptual Model: Establishes 
the basis for identifying and 
describing main data objects, 
providing a high-level description.

- Logical Model: Represents data 
as perceived by users, abstracting 
away physical storage details.



23

Recursive Relationships (1 of 2)

• Relationship can exist between occurrences of the same entity set
• Naturally, such a condition is found within a unary relationship

- Common in manufacturing industries

• One common pitfall when working with unary relationships is to confuse 
participation with referential integrity
• Similar because they are both implemented through constraints on the same 

set of attributes

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

In a manufacturing context, consider the "Supervises" relationship within 
an "Employee" entity set. An example could be an employee supervising 
another employee for training purposes. This demonstrates a unary 
relationship where an employee participates in the supervision of another 
employee, distinct from the typical hierarchical reporting structure.



24

Recursive Relationships (2 of 2)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

In an organization, an employee 
may marry another employee. 
This recursive relationship 
signifies that an employee can 
be married to another employee 
within the same organization. 
For example, John is married to 
Sarah, and both John and Sarah 
are employees of the company.

Within a company hierarchy, 
an employee can manage 
other employees. This 
recursive relationship 
illustrates that an employee 
can hold a managerial 
position over another 
employee. For instance, 
Sarah manages John, who is 
also an employee under her 
supervision.

In an academic institution, a 
course can serve as a 
prerequisite for another course. 
This recursive relationship 
indicates that one course can be 
a prerequisite for another 
course. For example, Security 1 
is a prerequisite for Security 2, 
forming a recursive relationship 
between courses.



25

Associative (Composite) Entities (1 of 2)

• Used to represent an M:N relationship between two or more entities

• Has a 1:M relationship with the parent entities
• Composed of the primary key attributes of each parent entity

• May also contain additional attributes that play no role in connective process

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

The associative entity, often called a bridge entity, is employed to represent a many-to-
many (M:N) relationship between two or more entities. It maintains a one-to-many 
(1:M) relationship with the parent entities and is composed of the primary key 
attributes of each parent entity. Additionally, it may include supplementary attributes 
that do not participate in the connective process.

A classic example of an associative entity is a "Student-Course" relationship in a 
university database. Here, students can enroll in multiple courses, and each course can 
have multiple students. The associative entity "Enrollment" would link students and 
courses, containing attributes such as enrollment date or grade.



26

Associative (Composite) Entities (2 of 2)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

Here, students can enroll in multiple classes/ courses, and each 
course can have multiple students. The associative entity "Enroll" 

would link students and courses, containing attributes such as 
enrollment date or grade.



27

Developing an ER Diagram (1 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

1.Gathering Organization Description: Begin by collecting a comprehensive description of the organization's 
operations, including its functions, processes, and data requirements.
2.Identifying Business Rules: Based on the organization's description, extract business rules that dictate how 
data should be stored and managed within the system. These rules govern the relationships between different 
entities and the constraints on data attributes.
3.Entity and Relationship Identification: Use the gathered business rules to identify the main entities (such as 
customers, products, or orders) and the relationships between them. This step involves determining the 
cardinality and participation constraints for each relationship.
4.Developing the Initial ERD: Construct the initial Entity-Relationship Diagram using standard notation, 
representing entities as rectangles, relationships as diamonds, and attributes as ovals connected to entities.
5.Attribute and Primary Key Definition: For each entity, identify and define its attributes, including primary 
keys that uniquely identify each entity instance. Ensure that attributes capture all necessary data elements 
required by the organization.
6.Revision and Review: Review the initial ERD for accuracy, completeness, and consistency with the 
organization's requirements. Revise the diagram as needed based on feedback from stakeholders and domain 
experts.

Building an Entity-Relationship Diagram (ERD) involves several key activities:



28

Developing an ER Diagram (2 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



29

Developing an ER Diagram (3 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



30

Developing an ER Diagram (4 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



31

Developing an ER Diagram (5 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



32

Developing an ER Diagram (6 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



33

Developing an ER Diagram (7 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



34

Developing an ER Diagram (8 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



35

Developing an ER Diagram (9 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



36

Developing an ER Diagram (10 of 11)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



37

Developing an ER Diagram (11 of 11)

Table 4.4 Components of the ERM

Entity Relationship Connectivity Entity

SCHOOL operates 1:M DEPARTMENT

DEPARTMENT has 1:M STUDENT

DEPARTMENT employs 1:M PROFESSOR

DEPARTMENT offers 1:M COURSE

COURSE generates 1:M CLASS

SEMESTER includes 1:M CLASS

PROFESSOR is dean of 1:1 SCHOOL

PROFESSOR chairs 1:1 DEPARTMENT

PROFESSOR teaches 1:M CLASS

PROFESSOR advises 1:M STUDENT

STUDENT enrolls in M:N CLASS

BUILDING contains 1:M ROOM

ROOM is used for 1:M CLASS

Note: ENROLL is the composite entity that implements the 
M:N relationship “STUDENT enrolls in CLASS.”

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



38

Database Design Challenges: Conflicting Goals (1 of 3)

• Database designers must often make design compromises that are 
triggered by conflicting goals
• Database design must conform to design standards
• High processing speed may limit the number and complexity of logically 

desirable relationships
• Maximum information generation may lead to loss of clean design structures 

and high transaction speed

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



39

Database Design Challenges: Conflicting Goals (2 of 3)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.

In simplified terms, designing a database poses challenges because different goals might clash, requiring compromises. 
Designers must follow established standards, but there's a trade-off: focusing on high-speed processing might limit the complexity 
of relationships. On the other hand, striving for maximum information generation could sacrifice a clean and efficient design, 
potentially impacting transaction speed. Hence, balancing these conflicting objectives is a key challenge in effective database 
design.

Imagine you're designing a database for an online store. You want it to be fast, handle a lot of transactions, and provide detailed 
information about customers and products. However, there are conflicts:
1.Speed vs. Complexity:

1. Goal: You want the website to load quickly for users.
2. Challenge: Including too many intricate/complex details about each product might slow down the website.
3. Compromise: You decide to display essential product information on the main page, reserving the detailed specifics for 

a separate page.

2.Information Generation vs. Clean Design:
1. Goal: You aim to gather as much data as possible for market analysis.
2. Challenge: Gathering extensive information on every customer and transaction might make the database messy.
3. Compromise: You choose to store only essential customer and transaction data in the main database, with the option 

to extract detailed reports for analysis separately.

In these examples, conflicting goals involve trade-offs between website speed and complexity, as well as between information 
generation and maintaining a clean database structure. Balancing these compromises is crucial for a successful and efficient 
database design.



40

Database Design Challenges: Conflicting Goals (3 of 3)

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.



41

Summary 

• The ERM uses ERDs to represent the conceptual database as viewed by 
the end user

• Connectivity describes the relationship classification (1:1, 1:M, or M:N)

• In the ERM, an M:N relationship is valid at the conceptual level

• ERDs may be based on many different ERMs

• Unified Modeling Language (UML) class diagrams are used to represent 
the static data structures in a data model

• Database designers, no matter how well they can produce designs that 
conform to all applicable modeling conventions, are often forced to make 
design compromises

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-
protected website for classroom use.


	Slide Number 1
	Learning Objectives
	The Entity Relationship Model (ERM)
	Entities
	Attributes (1 of 7)
	Attributes (2 of 7)
	Attributes (3 of 7)
	Attributes (4 of 7)
	Attributes (5 of 7)
	Attributes (6 of 7)
	Attributes (7 of 7)
	Relationships, Connectivity, and Cardinality 
	Existence Dependence
	Relationship Strength
	Weak Entities (1 of 3)
	Weak Entities (2 of 3)
	Weak Entities (3 of 3) 
	Relationship Participation (1 of 3)
	Relationship Participation (2 of 3)
	Relationship Participation (3 of 3)
	Relationship Degree (1 of 2)
	Relationship Degree (2 of 2)
	Recursive Relationships (1 of 2)
	Recursive Relationships (2 of 2)
	Associative (Composite) Entities (1 of 2)
	Associative (Composite) Entities (2 of 2)
	Developing an ER Diagram (1 of 11)
	Developing an ER Diagram (2 of 11)
	Developing an ER Diagram (3 of 11)
	Developing an ER Diagram (4 of 11)
	Developing an ER Diagram (5 of 11)
	Developing an ER Diagram (6 of 11)
	Developing an ER Diagram (7 of 11)
	Developing an ER Diagram (8 of 11)
	Developing an ER Diagram (9 of 11)
	Developing an ER Diagram (10 of 11)
	Developing an ER Diagram (11 of 11)
	Database Design Challenges: Conflicting Goals (1 of 3)
	Database Design Challenges: Conflicting Goals (2 of 3)
	Database Design Challenges: Conflicting Goals (3 of 3)
	Summary 

